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I. Introduction
The inverted pendulum system features as higher order, non-linear, 
strong coupling and multivariate, which has been studied by many 
researchers.  It is used to model the field of robotics and aerospace 
field, and so has important significance both in the field of the 
theoretical study research and practice.
The theory of fractional calculus refers to the fractional order 
differentiation and integration.  The fractional controller, first 
proposed by I.Podlubny, is different from the integer order controller 
in the point that it adds two parameters: the fraction differential 
operator and integration operator, which leads to fractional order 
PID Controller more flexible to control the plant.
Proportional-Integral-Derivative (PID) Controllers have been used 
for several decades in industries for process control applications.  
The reason for their wide popularity lies in the simplicity of design 
and good performance including low percentage overshoot and 
small settling time.  In FOPID Controller Integral and Derivative 
operations are usually of fractional order, therefore in addition of 
setting the proportional, derivative and integral constants KP,KD,KI  
there are two more parameters: the order of fractional integration 
λ and fractional derivative µ.  
In general, the integer-order approximation of the fractional 
systems can cause significant differences between mathematical 
model and real system.  The main reason for using integer-
order models was the absence of solution methods for fractional 
differential equations.  At present time there are lots of methods for 
approximation of fractional derivative and integral and fractional 
calculus can be easily using wide areas of applications.  So the 
problem is overcome by the use of fractional order controllers.
The one-dimensional swinging inverted pendulum with two 
degrees of freedom (i.e. the angle of the inverted pendulum and 
the movement of robot along forward and backward direction) 
is a popular demonstration of using feedback control to stabilize 
an open-loop unstable system.  
In this system, an inverted pendulum is attached to a cart equipped 
with a motor that drives it along a horizontal track. The thin 
vertical rod (the pendulum) hinged at the bottom, referred to as 
pivot point is mounted on a cart which can move along horizontal 
direction.  The cart, depending upon the direction of the deflection 
of the pendulum (the angle of the inverted pendulum), moves 

horizontally in order to bring the pendulum to absolute rest in a 
vertical position.
A FOPID (Fractional Order PID) controller has been used to 
generate signal to control the speed and direction of the motor. 
The sensor used in this work for generating the appropriate control 
signal.
The Mathematical expression was established to find the system 
transfer function based on Newton’s second law of motion.  
MATLAB has been used for closed loop transfer function 
simulation with various controllers and comparing their results, 
finding the best controller. 

II. Theory of Fractional Order
There are several definitions of fractional differentiation and 
integral such as Riemann-Liouville definition, Grunwald-Letnikov 
definition and Caputo definition, which are commonly used in 
theory and automatic control field.
The integral definition of Riemann-Liouville follows as:
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III. Inverted Pendulum System Modeling and Analysis

1. Inverted pendulum system

Abstract 
The inverted pendulum is a classical control problem, which involves developing a system to balance a pendulum.  Generally, PID 
Controllers are widely used for control applications.  The performance of PID Controller can be improved by appropriate setting 
of fractional integral and derivative actions.  In this paper modeling of an inverted pendulum has been done and then different 
controllers have been used for stabilization of the pendulum.  The design methods of integer order controllers and fractional order 
controllers are given.  The majority of tasks is carried out by means of the FOMCON (“Fractional –Order Modeling and Control”) 
toolbox running in the MATLAB computing environment.  The simulation results prove that the proposed method can achieve high 
performance comparing the Integer order PID Controller, as whole the Fractional Order PID Controller is the best controller.

Keywords
Inverted Pendulum, fractional order PID Controllers, FOMCON toolbox.
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Fig.1: Cart and Inverted Pendulum System

To find the system transfer function a brief description on the 
modeling of the inverted pendulum is presented in this section.  
The system consists of an inverted pole hinged on a cart which 
is free to move in the x direction as shown in Fig.1.
In order to obtain the system dynamics the following assumptions 
have been made:

The system starts in an equilibrium state i.e. that the initial 1.	
conditions are assumed to be zero.
The pendulum does not move more than a few degrees away 2.	
from the vertical to satisfy a linear model.
A step input (displacement of the pendulum, θ) is applied 3.	
to the system.

For the analysis of system dynamic equations, Newton’s second 
law of motion was applied. Fig. 2 represents the Free Body 
Diagram (FBD) of the mechanism. The Force Distribution of 
the mechanism is shown in Fig. 2.

Table.1: Parameters of the Inverted Pendulum
M Mass of the Cart 0.5kg
M Mass of the pendulum 0.2kg

B Friction of the cart 0.1

L Length of the pendulum 0.3m

I Inertia of the pendulum 0.006 kg.m2

F Force applied to the cart

G Gravity 9.8 m/s2

ɸ Vertical pendulum angle

Fig.2: Free body diagram of the Inverted Pendulum

x, x’, x’’  - Cart position coordinate, cart velocity and cart 
acceleration, respectively.
θ, θ’, θ’’ - Pendulum angle from the vertical, pendulum angular 
velocity and angular acceleration, respectively.
N – Sum of the forces of the cart. 
P – Sum of the forces of the pendulum in the horizontal 
direction.
While the pendulum rod tilts with some angle, it resolves two 
force components along horizontal and vertical direction. ‘P’ 
denotes the force exerted by the pendulum in vertical direction, 
and ‘N’ in horizontal direction, when θ = 90 deg, N= 0, and  P 
= maximum.
Summing the forces in the Free Body Diagram of the cart in the 
horizontal direction, you get the following equation of motion: 
Mx’’+bx’+N = F                                                                  (1)
The sum of forces in the vertical direction is not considered 
because there is no motion in this direction and we consider that 
the reaction force of the earth balances all the vertical forces.
Summing the forces along the horizontal direction,        
N = mx’’ + mLθ’’cosθ - mLθ’2sinθ                                         (2)
After substituting eqn. 2 into eqn. 1, the first equation of motion 
for the system was found as follows:   
F=(M+m)x’’+bx’+mLθ’’cosθ-mLθ’2sinθ(3)
To obtain the second equation of motion, the forces along the 
perpendicular direction of the pendulum was summed up. 
Psinθ+Ncosθ–mgsinθ=mLθ’’+mx’’cosθ(4)
To get rid of P and N terms from the eqn. 4, the moments around 
the centroid of the pendulum was taken which resulted following 
equation: 
- PLsinθ– NLcosθ = Iθ’’ (5)
Combining eqn. 4 and 5, the second dynamic equation was 
obtained as follows: 
(I + mL2 )θ’’ + mgLsinθ = - mLx’’cosθ(6)
(3) & (6) are non-linear and need to be linearized for the operating 
range. Since the pendulum is being stabilized at an unstable 
equilibrium position, which is     Л  radians from the stable 
equilibrium position, this set of equations should be linearized 
about θ = Л.  Assume that θ = Л + ɸ, (where ɸ represents a small 
angle from the vertical upward direction). Therefore, cos (θ) = 
-1, sin (θ) = - ɸ, and (d(θ)/dt)^2 = 0. 
Thus, after linearization the following 2 equations of motion were 
appeared (where F represents the input): 
(M + m)x’’ + bx’ - mLɸ’’ = F
(I + mL2 )ɸ’’ - mgLɸ= mLx’’

Taking Laplace transform,
(M + m)X(s)s2 + bX(s)s –mLɸ(s)s2 = F(s)
(I + mL2) ɸ(s)s2–mgLɸ(s) = mLX(s)s2

Assuming that the initial condition is 0, then the transfer function 
of the inverted pendulum is nothing but the ratio of Laplace 
Transform of angle of the pendulum [ɸ(s)] and the external force 
[F(s)]. It is denoted as P(s).     
P(s) = ɸ(s) / F(s) = ((mL/q)s) / (s3 + (b (I + mL2)/q) s2 - ((M + m)
mgL/q)s - (bmgL/q) )
q = (M + m) (I+mL2) – (mL)2

Applying the values for the parameters, the transfer function of 
the plant becomes,
P(s) = (4.5454s) / (s3 + 0.1818s2- 31.1818s -4.4545)

2. Analysis of uncompensated system
Fig.3 shows the unit step response of the system, which shows 
that amplitude of the system tends to infinity, so the system is 
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unstable.

Fig.3: Open loop step response of uncompensated system

Fig.4: Root locus of uncompensated system

The poles position of the Inverted Pendulum (in open loop 
configuration) shows that the system is unstable, as one of the 
poles of the transfer function lies on the Right Half Side of the 
s-plane. Thus the system is absolutely unstable.
From Fig 3 & 4, it is revealed that the inverted pendulum system 
is unstable.

3. Stabilization of inverted pendulum system
P(s) = (4.5454s) / (s-5.5651) (s+5.6041) (s+0.1428)
Observation of the closed loop unity feedback response to check 
the stability:
Many systems are unstable in open loop but stable in closed loop 
configuration.  The closed loop uncompensated system can be 
studied by viewing the root locus plot of the system. Following 
figure shows the root locus plot of the system. 

Fig.5: Root locus of closed loop uncompensated system

The plot reveals that the system cannot be controlled by a simple 
unity feedback loop.  Whatever be the value of loop gain, one 
branch of the locus remains on RHS (in unstable region) of s-plane. 
This makes control impossible by unity feedback.

Fig.6: Closed loop step response of uncompensated system

From the above analysis, it is concluded that using only the 
gain compensation in closed loop cannot control the Inverted 
Pendulum. RESHAPING OF THE SYSTEM ROOT LOCUS is 
necessary so that the system has all its roots in the left half plane 
(stable region) of the s-plane.

4. Compensator Design
Direct compensator is used to eliminate the unstable zero-pole of 
the system.  The compensation unit function is denoted as H(s).
H(s) = (s-5.5651)/s
Now the generalized plant is P1(s).
P1(s) = 4.5454 / (s+5.6041) (s+0.1428)
P1(s) = 4.5454 / (s2 + 5.7469s + 0.80026)
The unit step response of the generalized plant is shows in Fig.8. 
It shows that generalized plant under the unit step signal, directly 
eliminate the open loop unstable zero pole. Although the system 
achieve stability, the system has lost accuracy index, rapidity and 
robustness performance indicators.



International Journal of Advanced Research
in Education & Technology (IJARET)

173

Vol. 4, Issue 2  (April - June 2017) 
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved 

Fig.7: Root locus of compensated system

Fig.8: Open loop step response of compensated system

Even after applying unity feedback also, it does not provide the 
desired output.  It is shown below.

Fig.9: Closed loop step response of compensated system

Now the system is stable and can use the various control method 
to achieve better performance.The basic block diagram is shown 
below.                                                      

Fig.10 Block diagram of Inverted Pendulum System

Where,
Ref – Reference •	
E – Error•	
IP – Inverted Pendulum•	
O/P – Output•	
FOPID – Fractional Order PID Controller•	

5. Various controllers
The controllers which are given in Table.2 are used for 
achieving better performance of the inverted pendulum and its 
design parameters are given which is found out by hit and trial 
method.

Table.2: Controller Design
CONTROLLER DESIGN

Integer Order P 
controller (IOP)

C1(s) = KP
Kp = 3.2600

Integer Order PI 
controller (IOPI)

C1(s) = KP + (KI /s)
Kp = 0.11525
KI = 0.0330

Integer Order PD 
controller (IOPD)

C1(s) = KP + sKD
Kp = 3.4512
KD = 0.0300

Integer Order PID 
controller (IOPID)

C1(s) = KP + (KI/s) + sKD
Kp = 1.2647
KI = 0.4244
KD = 0.0132

Fractional Order PI 
controller (FOPI)

C1(s) = KP + KI /s
λ

Kp = 1.0000
KI = 0.3000
λ = 0.9800

Fractional Order 
PD controller 
(FOPD)

C1(s) = KP + KDsµ

Kp = 18.1655
KD = 0.0994
µ = 0.9537

Fractional Order 
PID controller 
(FOPID)

C1(s) = KP + KIs
-λ + KDsµ

Kp = 2.4500
KI = 0.6000
KD = 0.0580
λ = 0.9800
µ = 0.9560
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IV. Summary of the Simulation Results
The Performance of the various controllers are described in 
Table.3.
Here,

C - Controller•	
T•	 r - Rise Time
T•	 s - Settling Time
M•	 p - Overshoot
V•	 m - Peak Amplitude
Y/N– Checking the desired output condition.•	
Y - Yes•	
N – No•	

Table.3: Characteristics of Various Controllers

C Tr(s) Ts(s) Mp(%) Vm Y/N

IOP 0.560 1.49 - 0.983 N

IOPI 10.70 32.80 5.38 1.050 Y

IOPD 0.542 1.44 - 0.986 N

IOPID 1.330 8.04 9.22 1.090 Y

FOPD 0.980 2.50 - 0.995 N

FOPI 2.900 10.00 4.40 1.044 Y

FOPID 1.910 6.00 1.90 1.019 Y

Thus the Plant with IOP, IOPD, FOPD Controllers don’t give the 
desired output.  And the plant with IOPI, IOPID, FOPI, FOPID 
Controllers give the desired output.  

Table.4: Effect of Increasing a Parameter Independently
Parameter Rise Time Overshoot Settling Time

KP Decreases Increases Small change

KI Decreases Increases Increases

KD Minor 
Decrease

Minor 
Decrease

Minor 
Decrease

λ Decreases Increases Increases

µ Decreases Decreases Decreases

Table.4 is obtained from the simulation results.  KI and λ have the 
same effect, likewise KD and µ have the same effect.So by using 
small control input, it is easy to achieve desired results. 

Fig.11: Closed loop step response of various controllers

V. Conclusion
Analyzing the stabilized inverted pendulum system under various 
controllers, the FOPID Controller is found to be the fastest response 
controller to reach stabilization.  The single control affection of 
FOPID Controller may not be better than other controllers but its 
overall performance is much better than other controllers.  The 
FOPID controller and IOPID can reach almost the same control 
affection.  But comparing the overall performance it is proved that 
the FOPID controller is much better than other controllers.  The 
future scope of this paper is to implement the FOPID controller 
in inverted pendulum system for better performance.   
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