Integral Solutions of Ternary Quadratic Diophantine Equation $11x^2 - 3y^2 = 8z^2$

R.Anbuselvi, S.Jamuna Rani

'Associate Professor, Dept. of Mathematics, ADM College for Women, Nagapattinam, Tamilnadu, India "Asst Professor, Dept. of Computer Applications, Bharathiyar College of Engineering and Technology, Karaikal, Puducherry, India

Abstract

The ternary quadratic Diophantine equation given by $11x^2 - 3y^2 = 8z^2$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Kevwords

Ternary Quadratic, Integral Solutions, Polygonal Numbers.

Introduction

Ternary quadratic equations are rich in variety [1-3]. For an extensive review of sizable literature and various problems, one may refer [1-16]. In this communication, we consider yet another interesting ternary quadratic equation $11x^2 - 3y^2 = 8z^2$ and obtain infinitely many non-trivial integral solutions. A few interesting relations between the solutions and special Polygonal numbers are presented.

Notations Used

- $t_{m,n}$ Polygonal number of rank 'n' with size 'm'
- P_n^m Pyramidal number of rank 'n' with size 'm'

Methods of Analysis

The Quadratic Diophantine equation with three unknowns to be solved for its non zero distinct integral solutions is

$$11x^2 - 3y^2 = 8z^2 \tag{1}$$

On substituting the linear transformations

$$x=u+v\;;$$

$$y = u - v \tag{2}$$

in (1), it leads to

$$u^2 = 33v^2 + z^2 \tag{3}$$

We obtain different patterns of integral solutions to (1) through solving (3) which are illustrated as follows:

Pattern I

Equation (3) is satisfied by

$$u = 33m^2 + n^2$$

$$v = 2mn$$

$$z = 33m^2 - n^2$$

Substituting (4) and (3) in (2), the corresponding non-zero distinct integral solution of (1) are given by

$$x(m,n) = x = 33m^{2} + n^{2} + 6mn$$

$$y(m,n) = y = 33m^{2} + n^{2} + 22mn$$

$$z(m,n) = z = 33m^{2} - n^{2}$$

Properties

- 1. $x(m,4) 48 t_{3,m} t_{18,m} \equiv 16 \pmod{8}$
- 2. $y(m, 2) 66 t_{3,m} \equiv 4 \pmod{11}$
- 3. $z(m, 1) t_{68,m} + 1 \equiv 0 \pmod{32}$
- 4. $x(1,n) 2t_{3,m} \equiv 3 \pmod{5}$
- 5. $y(z,n) 2t_{3,n} \equiv 3 \pmod{43}$
- 6. $y(a, a + 1) x(a, a + 1) 32 t_{3,a} \equiv 0$
- 7. $y(a, a(a+1)) x(a, a+1) 32 P_a^5 \equiv 0$

8.
$$y(a(a+1)(a+2)) - x(a(a+1)(a+2)) - 96P_a^3 \equiv 0$$

- 9. x + y + z is expressed as the difference of two squares when m = n
- 10. Each of the following expression represents a nasty number
 - (i) x(a,a) + y(a,a)
 - (ii) y(a,a) z(a,a)

Note

Instead of (2) one may also consider the linear transformation

$$x = u - 3v$$
; $y = u - 11v$ (6)

For this choice, the corresponding integer solutions to (1) are

$$x = m^2 + 33n^2 - 6mn$$

$$y = m^2 + 33n^2 - 22mn$$

$$z = m^2 - 33n^2$$

ISSN: 2394-2975 (Online)

ISSN: 2394-6814 (Print)

ISSN: 2394-2975 (Online) ISSN: 2394-6814 (Print)

Pattern II

Equation (3) is written as
$$\frac{u-z}{3v} = \frac{11v}{u+z} = \frac{m}{n} , \quad n \neq 0$$
 (7)

Which is equivalent to the system of equations

$$um + zm - 11vn = 0$$
$$un - zn - 3vm = 0$$

From which we get

Using (8) in (2) we obtain the integer solutions to(1) as given below

$$x = 3m^{2} + 11n^{2} - 6mn$$

$$y = 3m^{2} + 11n^{2} - 22mn$$

$$z = 3m^{2} - 11n^{2}$$
(9)

Properties

1.
$$x(a, a + 1) - y(a, a + 1) - 36 t_{3,a} \equiv 0$$

2.
$$x(a, 1) - y(a, 1) \equiv 0 \pmod{16}$$

3.
$$8x(a^2, a + 1) - 8y(a^2, a + 1) - 256P_a^5 \equiv 0$$

- 4. $x(a,a) z(a,a) \equiv 0$
- 5. $x(a,a) + y(a,a) \equiv 0$

6.
$$x(a, a(a+1)) - y(a, a(a+1)) - 32P_a^5 \equiv 0$$

7.
$$x(a, (a+1)(a+2)) - y(a, (a+1)(a+2)) - 96 P_a^3 \equiv 0$$

- 8. $z(1,b) y(1,b) + t_{46,b} \equiv 0$
- 9. Each of the following expressions represents a nasty number
 - (i) 3[x(a,a) + y(a,a)]
 - (ii) 6[y(a,a) + z(a,a)]
 - (iii) 3[x(a,-a) + y(a,-a) + z(a,-a)]
 - (iv) 2[x(a,-a) y(a,-a) z(a,-a)]

Pattern III

Equation (3) can be written as

$$z = u^2 - 33v^2 \tag{10}$$

Take
$$z = a^2 - 33b^2$$
 (11)

Using (10) and (11) and equating positive and negative factors, we get

From (12)and (13)we get

$$x = a^2 + 33b^2 + 6ab$$

 $y = a^2 + 33b^2 - 22ab$ (13)

$$z = a^2 - 33b^2 \tag{14}$$

Thus (13) and (14) represent non-zero distinct integer solutions to (1)

Properties

1.
$$x(a, 1) - 2t_{3,a} \equiv 33 \pmod{5}$$

2.
$$y(a, 1) - 2t_{3,a} \equiv 33 \pmod{21}$$

3.
$$y(a,b) - x(a,b) = 16ab$$

4.
$$y(a, a + 1) - x(a, a + 1) - 32t_{3,a} \equiv 0$$

5.
$$y(a, a(a+1)) - x(a, (a+1)) - 32 P_a^5 \equiv 0$$

6.
$$y(a, (a+1)(a+2)) - x(a, (a+1)(a+2)) - 96 P_a^3 \equiv 0$$

7.
$$y(a,1) + z(a,1) - t_{98,a} + t_{94,a} \equiv 0 \pmod{4}$$

8. Each of the following expression represents a nasty number

(i)
$$x(b,-b)-z(b,-b)$$

(ii)
$$8[y(2a,a) + z(2a,a) - x(2a,a)]$$

Pattern IV

Write (3) as
$$z^2 + 33v^2 = u^2 \times 1$$
 (15)

Assume
$$u = a^2 + 33b^2$$
 (16)

$$1 = \frac{\left(4 + i\sqrt{33}\right)\left(4 - i\sqrt{33}\right)}{49} \tag{17}$$

Using (16) and (17) in (15) and employing the method of factorization, define

$$z + i\sqrt{33} \ v = (a + i\sqrt{33}b)^2 (45 + i\sqrt{33})$$

Equating real and imaginary part, we get

$$z = \frac{1}{7}(f(a,b))$$

$$= \frac{1}{7}(4a^2 - 66ab - 132b^2)$$

$$v = \frac{1}{7}(g(a,b))$$

$$= \frac{1}{7}(a^2 - 33b^2 + 8ab)$$
(18)

ISSN: 2394-2975 (Online) ISSN: 2394-6814 (Print)

As our interest is on finding integer solutions, it is seen that the values of x, y and z are integers when both a and b are of the same parity. Thus by taking a = 7a, b = 7b in (18) and substituting the corresponding values of u,v in (2) the non-zero integral solution of (1) are given by

$$x = 70m^{2} + 924n^{2} + 168mn$$

$$y = 126m^{2} - 924n^{2} + 616mn$$

$$z = 28m^{2} - 924n^{2} - 462mn$$
(19)

Properties

- 1. $x(a(a+1)), y(a, a+1) 980 \ Obl_a \equiv 0 \ (mod \ 14)$
- 2. $x(a, a(a+1)), y(a, a(a+1)) = 1568P_a^5 196_a^2$
- 3. $x(a,1) + y(a,1) z(a,1)196t_3^a \equiv 0 \mod (14)$
- 4. $x(2,b) + y(2,b) = 784 \mod(1568)$
- 5. $x(a, 1) + y(a, 1) z(a, 1) 196_3^a \equiv 0 \pmod{980}$

Conclusion

To conclude, one may search for other patterns of solutions and their corresponding properties.

References

- [1]. GopalanMA,Manjusomanath,VanithaN.On Ternary Cubic Equation $x^2 y^2 = z^3$, ActaCiencia Indica,2007, vol XXXIIIM, No-3,705-707.
- [2]. GopalanMA, SangeetheG. On the Ternary Cubic Diophantine Equation $y^2 = Dx^2 + z^3$ Archimedes J.Math, 2011, 1(1):7-14
- [3]. GopalanMA, VijayashankarA, VidhyalakshmiS. Integral solutions of Ternary cubic Equation,, Archimedes J. Math, 2011; 1(1):59-65.
- [4]. GopalanM.A, VidhyalakshmiS, KavithaA, Observation on the Ternary Cubic Equation $x^2 + y^2 + xy = 12z^3$ Antarctica J.Math, 2013; 10(5):453-460.
- [5]. GopalanM.A, GeethaD, Lattice points on the Hyperboloid of two sheets $x^2 6xy + y^2 + 6x 2y + 5 = z^2 + 4$ Impact J.Sci. Tech, 2010, 4, 23-32.
- [6]. GopalanM.A, VidhyalakshmiS, KavithaA, Integral points on the Homogenous Cone $z^2 = 2x^2 7y^2$, The Diophantus J.Math, 2012, 1(2) 127-136.
- [7]. GopalanM.A, VidhyalakshmiS, SumathiG, Lattice points on the Hyperboloid of one sheet $4z^2 = 2x^2 + 3y^2 4$, The Diophantus J.Math, 2012, 1(2), 109-115.
- [8]. GopalanM.A, VidhyalakshmiS, LakshmiK, Integral points on the Hyperboloid of two sheets $3y^2 = 7x^2 z^2 + 21$, Diophantus J.Math, 2012, 1(2), 99-107.
- [9]. GopalanM.A, VidhyalakshmiS, MallikaS, Observation on Hyperboloid of one sheet $x^2 + 2y^2 z^2 = 2$ Bessel J.Math, 2012, 2(3), 221-226.
- [10]. Gopalan M. A, Vidhyalakshmi S, Usha Rani T.R, Mallika S, Integral points on the Homogenous cone $6z^2 + 3y^2 2x^2 = 0$ Impact J. Sci. Tech, 2012, 6(1), 7-13.
- [11]. GopalanM.A, VidhyalakshmiS, LakshmiK, Lattice points

- on the Elliptic Paraboloid, $16y^2 + 9z^2 = 4x^2$ Bessel J.Math, 2013, 3(2), 137-145.
- [12]. GopalanM.A, VidhyalakshmiS, UmaraniJ, Integral points on the Homogenous Cone $x^2 + 4y^2 = 37z^2$, Cayley J.Math, 2013, 2(2), 101-107.
- [13]. MeenaK, VidhyalakshmiS, GopalanM.A, PriyaK, Integral points on the cone $3(x^2 + y^2) 5xy = 47z^2$, Bulletin of Mathematics and Statistics and Research, 2014, 2(1), 65-70
- [14]. Gopalan M.A, Vidhyalak shmi S, Nivetha S, on Ternary Quadratic Equation $4(x^2 + y^2) 7xy = 31z^2$ Diophantus J. Math, 2014, 3(1), 1-7.
- [15]. GopalanM.A, VidhyalakshmiS, ShanthiJ, Lattice points on the Homogenous Cone $8(x^2 + y^2) 15xy = 56z^2$ Sch Journal of Phy Math Stat, 2014, 1(1), 29-32.
- [16]. MeenaK, GopalanM.A, VidhyalakshmiS, ManjulaS, Thirunir aiselvi, N, On the Ternary quadratic Diophantine Equation $8(x^2 + y^2) + 8(x + y) + 4 = 25z^2$, International Jounal of Applied Research, 2015, 1(3), 11-14.

Reference Books

- [1]. Dickson IE, Theory of Numbers, vol2. Diophantine analysis, New York, Dover, 2005
- [2]. MordellLJ.Diophantine Equations Academic Press,New York.1969
- [3]. Carmichael RD, The Theory of numbers and Diophantine Analysis, NewYork, Dover, 1959.