
International Journal of Advanced Research
in Education & Technology (IJARET)

7

Vol. 2, Issue 4 (Oct. - Dec. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Parallel Program for Sorting NXN Matrix Using PVM
(Parallel Virtual Machine)

Ehab AbdulRazak Al-Asadi
College of Science –Kerbala University, Iraq

I. Introduction
PVM (Parallel Virtual Machine) is a software system that enables
a collection of heterogeneous computers to be used as a coherent
and flexible concurrent computational resource. The individual
computers may be shared- or local-memory multiprocessors,
vector supercomputers, specialized graphics engines, or scalar
workstations, that may be interconnected by a variety of networks,
such as Ethernet, FDDI, etc. PVM support software executes on
each machine in a user-configurable pool, and presents a unified,
general, and powerful computational environment of concurrent
applications. User programs written in C or FORTRAN are provided
access to PVM through the use of calls to PVM library routines
for functions such as process initiation, message transmission
and reception, and synchronization via barriers or rendezvous.
Users may optionally control the execution location of specific
application components. The PVM system transparently handles
message routing, data conversion for incompatible architectures,
and other tasks that are necessary for operation in a heterogeneous,
network environment.
PVM is particularly effective for heterogeneous applications that
exploit specific strengths of individual machines on a network. As
a loosely coupled concurrent supercomputer environment, PVM is
a viable scientific computing platform. The PVM system has been
used for applications such as molecular dynamics simulations,
superconductivity studies, distributed fractal computations,
matrix algorithms, and in the classroom as the basis for teaching
concurrent computing

A. Shear Sort Algorithm
Classical algorithm to organize a two-dimensional array. The basic
idea is to redistribute data in rows and columns, and is allowed
to hold them in parallel, This sorting algorithm consists of row
and column sorting phases.
In row sorting phase, each row is sorted so that even numbered
rows have the largest number to right, and odd numbered rows
have the largest number to the left.
In column sorting phase, each column is sorted so that the smallest
numbers appearing at the top of columns. After ceiling(log2n) + 1
phases, where n is the number of data, the data becomes sorted

Shear Sort Algorithm .Fig(1)

B. Solving the problem
The problem can be solve by appropriate algorithm for arranging
the field of size NxN. In the case of the use of parallelism I have
chosen the layout using the method Shear sort. This allows you to
split the field into rows and columns. You then followed parallel
organize according to the following scheme

Abstract
The study will focus for analysis the possibilities of implementing sequential as well as parallel algorithms for sorting an array
N x N. Design and implement (in C / C ++) program, respectively. Programs for sequential algorithm and bodies solving based
on a transmission of messages between nodes by using a system PVM libraries. Output (STDOUT) for both programs must be
»identical software. Reduce the time Between nodes so that the calculation time as small as possible. Find out what’s dependence
and acceleration of the implementation period for calculating the number of nodes and the size of the tasks in relation to sequencing
program, (insert The table and charts). Based on the results estimate: latency communication, for what is the role of the dimension
of the architecture. Discuss about what the benefits, effectiveness of parallel program of various algorithms. it requires for solving,
use the input and output files with nuts row matrix corresponding file line and column values ​​are separated by spaces or tabs. Unless
otherwise stated, work with real numbers.

Keywords
Shear sort,PVM, MPI, Parallel Program.

International Journal of Advanced Research
in Eduation & Technology (IJARET)

8

Vol. 2, Issue 4 (Oct. - Dec. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Fig. 2 : Shear Sort Mechanism
			
1. 	 Lines described as odd and even.
2. 	 The odd lines to arrange ascending, descending even lines.
3. 	 Arrange Columns, each ascending.
4. 	 Arrange all the rows in ascending order.
5. 	 End

From the principle of the algorithm is to see the possibility of
application within a distributed system. Multiple processors can
perform configuration rows. Next, in step no. 3 it is possible to
organize individual columns simultaneously. Finally, again lines
(step 4). The case for reallocating tasks of organizing lines for
individual processors is indicated in the following figure(3)

Fig. 3 : Shear Sort Implementation

Number of processors for an array of size n numbers is √n.
According to the assignment we consider a two-dimensional array
of size NxN, namely the number of processors is N.

II. The Design
The basic element of the arrangement in ascending or descending
consists in comparing the two adjacent cells that form a pair. If
necessary, according to sequence or digressively to be replaced.
Taking into account the indexation of the field beginning at zero,
the first will be matched pairs 0 1, 3, 4, 5, 6, ..., then pairs 2-3,
4-5, 6-7, The first type of pairs will be compared and confused
one function, a second pair of second. Since these functions must
be universally applicable even in rows and columns will be better
for easy organization to give a two dimensional array to a one-

dimensional load gradually by line. This makes it easier to handle
the array index that will serve as parameters for these features
that are confusing elements.

A. The prerequisites for entry and exit
By accessing the algorithm will be one-dimensional array, which
will overwrite the original array NxN behind by line. Before the
algorithm will be necessary to implement the procedure of loading
elements from the input file(STDIN). The prerequisites for entry
will be error-free file format which will hold numbers separated
by a space .Pre maintaining a transparent matrix output will be
written to the file in the shape where adjacent elements in the
columns are separated by a space adjacent rows separated by a
line feed (‘\ n’).

B. The program environment
Application I programmed in C language library for the PVM
environment. The system itself consists of PVM daemon-and
running on each node. In this connection the node as the next work
station in the laboratory that provides the processing power of the
size of one processor. PVM is called. message passing system in
which parallel tasks to synchronize and exchange information by
sending messages.

C. Bernstein’s conditions
Let Pi and Pj be two program segments. Bernstein’s conditions
describe when the two are independent and can be executed in
parallel. For Pi, let Ii be all of the input variables and Oi the
output variables, and likewise for Pj. P i and Pj are independent
if they satisfy.

Ij ∩ Oi= ϕ
Ii ∩ Oj = ϕ
Oj ∩ Oi = ϕ

D. Research Objectives Goal
Utilize the Hardware, System, & Application Software to either
 Speedup = (Execution Time on 1 Single Processor)/ (Execution
Time on N processors)

Speedup=T/Tn

Efficiency = Speedup / N ≅1 𝑖𝑑𝑒𝑎𝑙
Solve problems requiring a large amount of memory.

III. The Implementation
Alternate row and column sorted until list fully sorted. Row sorting
in alternative directions to get snake-like sorting:

International Journal of Advanced Research
in Education & Technology (IJARET)

9

Vol. 2, Issue 4 (Oct. - Dec. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Fig. 4 : the Shear Sort flow

A. Rank Sort
Number of numbers that are smaller than each selected number
is counted. This count provides the position of selected number
in sorted list; that is, its “rank.”

First number a[0] is read and compared with each of the other •	
numbers, a[1] … a[n-1], recording the number of numbers
less than a[0].
Suppose this number is •	 x. This is the index of the location in
the final sorted list. The number a[0] is copied into the final
sorted list b[0] … b[n-1], at location b[x].
Actions repeated with the other numbers.•	

Overall sequential sorting time complexity of O(n2) (not exactly
a good sequential sorting algorithm

B. Sequential Code
for (i = 0; i < n; i++) { /* for each number */
	 x = 0;
	 for (j = 0; j < n; j++) /* count number less than it
*/
		 if (a[i] > a[j]) x++;
	 b[x] = a[i];		 /* copy number into
correct place */

C. Parallel Code Using n Processors
One processor allocated to each number. Finds final index in
O(n) steps. With all processors operating in parallel, parallel time
complexity O(n) with n processors.
In forall notation, code would look like
	 forall (i = 0; i < n; i++) {	 /* for each no in parallel*/
	 x = 0;
	 for (j = 0; j < n; j++) /* count number less than it
*/
		 if (a[i] > a[j]) x++;
	 b[x] = a[i];		 /* copy no into correct
place */
	 }

D. PVM Overviews
The PVM software provides a unified framework within
which parallel programs can be developed in an efficient and
straightforward manner using existing hardware. PVM enables
a collection of heterogeneous computer systems to be viewed as
a single parallel virtual machine. PVM transparently handles all
message routing, data conversion, and task scheduling across

a network of incompatible computer architectures. The PVM
computing model is simple yet very general, and accommodates a
wide variety of application program structures. The programming
interface is deliberately straightforward, thus permitting simple
program structures to be implemented in an intuitive manner. The
user writes his application as a collection of cooperating tasks.
Tasks access PVM resources through a library of standard interface
routines. These routines allow the initiation and termination of tasks
across the network as well as communication and synchronization
between tasks.

E. MPI(Message Passing Interface)
The Message Passing Interface (MPI), standard, whose speciation
was completed in April 1994, is the outcome of a community
effort to try to dene both the syntax, and semantics of a core of
message-passing library routines that would be useful to a wide
range of users and efficiently implementable on a wide range of
MPPs. The main advantage of establishing a message-passing
standard is portability. One of the goals of developing MPI is to
provide MPP vendors with a clearly define base set of routines
that they can implement efficiently or, in some cases, provide
hardware support for, thereby enhancing scalability

F. The Master –Slave Model (PVM)
•	 PVM is not restricted to this model
•	 Useful programming paradigm and simple to illustrate
•	 The master calls pvm_mytid() to
1.	 Allow it to use the PVM system, and
2.	 Enable interprocessor communications
•	 It then call pvm_spawn() to execute a given number of slave

programs on other machines
•	 Each slave program must also call pvm_mytid() to enable

processor communications
•	 Subsequently, pvm_send() and pvm_recv() are used to pass

messages between processes
•	 When finished, all the PVM programs should call pvm_

exit() to

Fig. 5 : Master –Slave paradigm

G. MPI (Message Passing Interface)
MPI (Message Passing Interface) is specification for message-
passing libraries that can be used for writing portable parallel
programs.
When we speak about parallel programming using MPI, we imply
that:
• 	 A fixed set of processes is created at program initialization;

one process is created per processor
• 	 Each process knows its personal number

International Journal of Advanced Research
in Eduation & Technology (IJARET)

10

Vol. 2, Issue 4 (Oct. - Dec. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

• 	 Each process knows number of all processes
• 	 Each process can communicate with other processes

Fig. 6 : Using MPI In Parallel Program

The Minimal MPI Program in (C) include the MPI.h Library

Fig. 6 : MPI library included

H. MPI_SEND
Sending messages via: MPI:COMM_WORLD.Send() (C++)
 Full C++ syntax: int MPI::COMM_WORLD.Send
(void* message, int count, MPI_Datatype datatype, int destination,
int tag

I. MPI_RECIEVE
Receiving messages via: MPI::COMM_WOLRD.Recv()
(C++)
int MPI::COMM_WORLD.Recv(void* message, int count,
MPI_Datatype datatype, int source, int tag, MPI_Status* status
)

IV. Results
After running the program, will use the real time to calculate
the speedup because the real time represent the time from the
beginning to end of program.

Table (1) Measurement of System Speedup at N process
Number of Process (N) 1 5 10 20 50
No of repeat Real Time Real Time Real Time Real Time Real Time
1 4.164 2.137 8.277 4.999 3.72
2 2.404 3.750 6.393 3.241 8.937
3 8.709 4.835 4.140 3.475 1.749
4 4.074 6.629 2.629 8.625 1.969
5 1.633 7.386 12.678 4.896 3.378
Average 4.956 4.1968 6.8234 5.0472 3.9506

SpeedUp=S= T1/Tn When T1(Time at 1 Process),Tn (Time
at n process)
S(T5)= execution time at(5) process =4.1968
So the S(T5) =T(5)/T(1)= 4.1968/4.956=0.846 (Speedup)

Efficiency of system =Speedup/N= 0.846 /5=0.1693 ,If efficiency
=~ 1 ,the system is Ideal System .

Number of Process Time

Fig. 7 : Relation between the Number of Process(N) Created and
the execution time

According to Fig (7) we can see the relation between Increase
the Number of Process created and decrease the (Time execution)

International Journal of Advanced Research
in Education & Technology (IJARET)

11

Vol. 2, Issue 4 (Oct. - Dec. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

and this one of the benefits of using PVM and MPI In system gain
the system faster.
Number of Process Speedup

Fig. 8 : Speedup Increased with The Number of process created
Number of Process

Speedup

Fig. 9 : The system Efficiency

V. Conclusion
MPI provides a convenient standard to implement parallel
programs on distributed memory architectures. The programmer
has to take care of the parallelization. A thorough analysis of the
algorithms and data structures is important. It is difficult to change
an existing serial program into a parallel version with MPI
The effect of parallel processes number and also the number of
cores on the performance of parallel, the execution times for both
of them increase as the number of processes exceeds the number
of cores.
Although MPI is becoming widely used, another message-passing
system called PVM (Parallel Virtual Machine) , is even more
common. PVM, which is essentially the only competitor of MPI,
Porting the proposed system so that it supports PVM programs
as well would make it more widely accepted.
The execution time decreased with Increase the number of Process
created by system (PVM) as shown in fig (7) mentioned above.
The Speedup of system computing Increased with number of
process created in system also so its big gain for system when
speedup increased.

References
[1]	 Message-Passing Interface Forum. 1994. ̀ `MPI: A Message-

Passing Interface Standard.’’ The International Journal
of Supercomputer Applications and High Performance
Computing, Vol. 8, No. 3/4.

[2] 	 S. G. Akl, ̀ `The Design and Analysis of Parallel Algorithms,’’
PrenticeHall, Englewood Cliffs, NJ, 1989.

[3]	 Hesham El-Rewini ,”Advance computer architecture and
parallel processing”John Wiley & Sons ,NJ ,2005.

[4]	 Puneet C Kataria, Parallel quicksort implementation using
MPI and Pthreads,2002

[5]	 Jordan, H. F., Jordan, H. E. Fundamentals of Parallel
Computing, Prentice Hall, 2002

[6]	 Gropp, W. et al, The Sourcebook of Parallel Computing,
Morgan Kaufmann, 2002

[7]	 Joseph, J., Fellenstein, C., Grid Computing, Prentice Hall,
2003	

