
International Journal of Advanced Research
in Education Technology (IJARET)

25

Vol. 2, Issue 2 (Apr. - June 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Improving Mapreduce Performance by Speculative Execution
Strategy Considering Data Locality and Data Skew

ISuprit S H, IIPrashanth B.S
IM.Tech Student, Dept of CSE, Mangalore Institute of Tech. and Engg., Mangalore, Karnataka, India
IIAsst. Professor, Dept of CSE, Mangalore Institute of Tech. and Engg., Mangalore, Karnataka, India

I. Introduction
MAPREDUCE [1] is proposed by Google in 2004 and has become
a popular parallel computing framework for big data processing.
In a typical MapReduce job the masters (job tracker) divides
the input files into number of map and reduce tasks, and then
allocates both map and reduce tasks to slave nodes in the cluster
for processing the tasks in parallel. When a slave node takes longer
time to process a task (the node will be called straggler machine),
it will delay the time of execution of the job significantly. This
problem is discussed and analyzed with a speculative strategy for
the execution delay in this paper. Speculative execution is running
the backup tasks of the slow running nodes on alternative machines
with the hope of efficiency in the performance.
Hadoop [2] is an open-source implementation of MapReduce. The
speculative execution study provides previously existing study on
it, the original speculative execution strategy is used in Hadoop-
0.20 (called Hadoop-Original), and it simply identifies a task as
slow running when the progress of the task is slower than all
the tasks by a certain threshold. The Hadoop-original has some
drawbacks, so a new strategy called LATE [4] was proposed which
is implemented in Hadoop-0.21 with little of modifications. The
HADOOP-LATE keeps the progress rate (progress/time) of tasks
and estimates their remaining time (progress remaining/progress
rate). This strategy will select a slow running task with the longest
remaining time, when there are only few map or reduce tasks left
in the processing.
Then a new strategy called Microsoft Dryad [3] was proposed to
support MapReduce. After this Mantri proposed a new speculative
strategy for Dryad. The significant difference between LATE
and Mantri [5] is that Mantri uses the task’s process bandwidth
(processed data / time) to calculate its task’s remaining time (data
left / process bandwidth).
All the strategies mentioned above have some of the drawbacks
in processing the tasks and identifying the slow tasks or selecting
the backup worker nodes. The strategies uses average process
speed (progress rate or process bandwidth) of task to compute the
remaining time, that assumes that a task progress at a stable rate.
But this can be false due to many reasons. First is in MapReduce,
a task is divided into multiple phases with affixed ratio of progress
for each, but those phases tend to vary in different jobs and
application environments. This leads to progress rate fluctuation
across different phases. Second reason is reduce tasks can be

launched asynchronously before completion of map tasks. In this
case the progress rate of the reduce tasks will be faster at the
beginning as some of the map tasks would have been completed
processing and map outputs have been ready. After copying those
ready map outputs, the progress rate of the reduce tasks will slow
down.
The existing strategies has drawback on managing data locality.
The tasks that are assigned to the slave node might not be having
the data required for it to process, so it may need to request the
data from different data nodes to process the task which will take
more time to process. Then one more is data skew, data skew
means variation in the data size, that is some data blocks can be
of varying sizes (not of the same size as specifies by the block size
of the MapReduce) that needs to be processed efficiently.
MapReduce and its open source implementation Hadoop have
made large scale data analysis widely accessible [8]. Such runtime
systems free users from problems associated with distributed
coordination, fault-tolerance, and scalability. However, users may
still suffer from performance problems related to skew if they are
not careful regarding their map and reduce implementations and
how data is partitioned across tasks.
In this paper, we propose an improvement to these Maximum
Cost Performance (MCP) to address the drawbacks successfully:
i) Use both process bandwidth and progress rate within a phase to
choose slow running tasks in the cluster, ii) it uses exponentially
weighted moving average (EWMA) to predict process progress
and task’s remaining time, iii) determining the tasks to backup
based on the cost benefit model, iv) it also includes data locality
concerned issues.
In summary, we make the following contributions. It explains
some of the strategies that are already been implemented that
are having some drawbacks. The further section contains the
improvement to the issues. It contains the implementation module,
explanation to the changes made to the existing module, then result
and conclusion part explains the papers motive.

II. Literature Survey
In this section, we study an explanation for MapReduce mechanism
and architecture, an overview of the reasons of stragglers, and then
describe the inner mechanisms of some widely used speculative
execution strategies.

Abstract
This paper presents the study of MapReduce performance in Hadoop architecture, the job assigned to the Hadoop is divided in to
tasks among the node of the cluster. But some of the nodes may be running slowly in the cluster to result in slow processing of the
MapReduce because of their processing capability of load on the node. Such tasks that are assigned to the slow running node in
the cluster are efficiently backed up on some other nodes. There are some existing strategies to backup the slow running tasks on
the alternate machines. This paper emphasizes considering data locality and data skew. The backup task should be allocated to the
nodes that are the data local. Some of the data blocks vary in block sizes that is skew in the size of the data.

Keywords
MapReduce, Backup, Data locality, Data Skew, Straggler machiness

International Journal of Advanced Research
in Eduation Technology (IJARET)

26

Vol. 2, Issue 2 (Apr. - June 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

A. MapReduce Mechanisms
In MapReduce Hadoop cluster, when a job is submitted, the
master divides the input files into multiple map and reduce tasks
to distribute among the slave nodes. All the worker nodes runs
the assigned tasks on their available task slots and keeps updating
about the progress of the tasks to the master by a periodic heartbeat.
Map tasks retrieves key-value pairs from input file. Then transfer
the key, value pairs to some user defined map function and combine
function, and finally generate the intermediate map outputs. After
this, the map outputs are made as inputs to reduce, and merge
those outputs to a single order (key, value) pair stream. Then the
result is generated by transferring the output to a user defined
reduce function.
The map tasks are divided into map and combine phases, whereas
reduce tasks are divided into copy, sort and combine phases. Reduce
tasks can start only after some of the map tasks are complete but
no reduce task can start sort phase until all the map outputs are
available for reduce phase.
The flow diagram for the MapReduce mechanism is shown in
the following figure-1.

Fig 1: Flow of MapReduce mechanism.

B. MapReduce Architecture
In the MapReduce architecture first a client submits job to job
tracker in the master node. Then the job tracker communicates
with name node and creates execution plan. The job tracker will
submit the tasks to the task tracker. Each task tracker will execute
the tasks allocated to the available slots in the data nodes. Then
each task tracker in the slave nodes will report the progress of the
tasks via periodic heartbeat updates. Job tracker manages different
phases in the MapReduce mechanism and it updates the status.

C. Causes of Straggler
The causes of straggler can be classified into internal and external
reasons as shown in Table 1.

Table 1: Causes of Straggler
Internal factors External factors

Heterogeneous capacity •
of slave nodes
MapReduce tasks •
running on the same
slave nodes causes
resource competition.

Resource competition •
due to co-hosted
applications
Input data skew•
Remote input or output •
source being very slow
Faulty hardware•

Internal reasons can be rectified by service provider, but external
reasons cannot be resolved. The reasons are explained with an
example, MapReduce cluster may be over-loaded with multiple
tasks running on the same slave node. This would result in resource
competition and would result in heterogeneous performance. The
internal reasons can be resolved by allowing only one task to run
on each slave node simultaneously or by allowing only different
resource usage of tasks to share the same slave node.

D. Existing System
The previous speculative strategies begin only when a map task or
reduce task is about to finish processing. Then it will select random
number of tasks remaining and back up until all the available
slots are allotted. This strategy does not consider problems like:
i) whether the tasks running on straggler machine were really
slow ? ii) Is the alternative slave node selected to run the backup
task is efficient?
There are some drawbacks in the previous strategies. When the
input data has some variably big files to process which cannot be
distributed. The map tasks that process those records will process
more data which will lead to data skew. Another problem is the
phase completion percentage of the map and reduce tasks doesn’t
match. The reduce tasks starting to process before all the map
tasks complete will also create problems. The reduce tasks will
not complete unless outputs of all map tasks are available.

III. Problem Definition
The paper explains when a job is submitted to a MapReduce
cluster, some of the nodes may be running very slow due to process
overloading or hardware inefficiency. When multiple numbers of
tasks are submitted in a cluster and almost all tasks completed but
few tasks processing very slow resulting in overall delay of the
cluster. This is the problem of this paper. The solution is to run
those slow running tasks on other slave node in the cluster to get
the better performance.

IV. Methodology
The new speculative execution strategy considers shortening of job
execution time and improvement in the performance of the cluster.
This strategy intends to select the slow running tasks accurately
and back up them on proper worker nodes. This new speculation
strategy chooses backup candidates based on the tasks process
speed and remaining time of the tasks execution.
The speculation strategy uses EWMA (exponentially weighted
moving average) method to predict the process speed. The EWMA
scheme is explained in the next section.

Fig 2 : Flow diagram of the speculation decision.

The major concern in this paper is reducing the job execution

International Journal of Advanced Research
in Education Technology (IJARET)

27

Vol. 2, Issue 2 (Apr. - June 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

time considering data locality that is we are making the data to
be local for most of the tasks that are allocated to the cluster. Data
locality is defined as how close compute and input data are, and
it has different levels node-level, rack-level [9]. If a task is to be
allocated a slot then it is checked to see if the slots are available
in the local cluster, if it is available then the task will be allocated
locally, if local slots are not available then it is checked to see if
free slots are available in the group, and so on in the rack. If there
are no slots locally available then the task is allotted anywhere
in the cluster.
Data skew is another major concern in this paper to reduce the job
execution time of the cluster. Tasks do not always process the same
amount of data and may experience several types of data skew
in MapReduce [6]. When the input data has few big input files
that cannot be divided, the map tasks that process those records
will have to process more data. When tasks are being assigned to
map or reduce in the cluster the nodes map and reduce slots in the
cluster are divide such a way that the high performing node will
be assigned more jobs and the slow running node will be assigned
the less of tasks to process. This method of variability in the task
assignment can reduce the time required for speculation after a
speculation task is executed.

A. Selection of slow running nodes
The speculation strategy selects the slow running (straggler
machines) tasks based on the process speed and remaining time
of the tasks. This paper uses EWMA algorithm to estimate the
process speed.

B. EWMA(exponentially weighted moving average)
The EWMA is used to predict the process speed of the task. There
are many prediction algorithms such as exponentially weighted
moving average and CUSUM [7].
E(t)= α * O(t) + (1- α) * E(t-1), 0< α<1, (1)
where E(t), O(t) is the estimated process speed and observed
process speed at time t respectively. α is constant set to 0.2, where
α reflects a tradeoff value between stability and responsiveness
in the calculation. This is because when α is too low it cannot
find the slow tasks and slow nodes in time while if it is too large,
it may cause misjudgments.

C. Estimating the tasks remaining time and Backup
time
In this paper the speculation strategy has the tendency to put the
task with longest remaining time with highest priority to be backed
up. A tasks remaining time is estimated by sum remaining time
left in different phases in the map (reduce) task. In general, a map
task is divided into map and combine phases, whereas reduce task
is divided into copy, sort and reduce phases.
Reduce tasks can start when only some map tasks complete, which
allows reduce tasks to copy map outputs earlier as they become
available and hence mitigates network congestion. However, until
all map tasks complete no reduce task can step into the sort phase.
This is because each reduce task must finish copying outputs from
all the map tasks to prepare the input for the sort phase.
The remaining time is calculated by adding remaining time of
current phase and future phase in a map task.
rem_time = rem_timecp + rem_timefp (2)
To estimate the backup time for the slow task, we calculate sum
of estimated time of each phase in this task as an estimation.
backup_time = ∑p est_timep * factord (3)

D. Maximizing cost performance of cluster computing
resources
Speculation execution has not only benefits, but also has resource
utilization costs. In a Hadoop cluster the cost of speculation
execution is task slots in the slave nodes, in this paper we are
considering the benefit by time saved by speculation execution.
Backing up a task will occupy two slots for backup_time (both
the original and the backup need to keep running until either
completes) and save one slot rem_time – backup_time. In contrast
to without backing it up will cost just one slot of rem_time and
benefit nothing. The profit of the two actions is:
Profitbackup = α*(rem_time–backup_time)
–β*2*backup_time. (4)
profitnot_backup = α * 0 * - β*rem_time. (5)
α, β are the weight of the benefit and cost, respectively.
Then the profit values of benefit of backup and benefit of not
backup is compared. If the benefit of backing up a task is better
than that of not backing up then that task is backed up otherwise
it is left as it is to run in the same node.

V. Building Hadoop and Evelopment Environment
The paper is implemented in the CentOS operating system. To
build the hadoop source it requires JDK environment. There are
many packages that needs to be built before building the hadoop
source they are: Cmake, OpenSSL, libtool, zlib, Protocol buffer,
Apache Maven, Ant , Ivy. To build the hadoop source, we get
hadoop build version in Github from the trunk and building hadoop
jar files. Using maven we build the hadoop jar files.

VI. Results
The speculative execution strategy implemented in Hadoop will
result in improvement in the performance of the Hadoop cluster.
The Hadoop cluster keeps track of the status of each task in the
cluster by heartbeat information. When a task is running very
slowly in the cluster the speculation strategy will take decision to
back up the slow running task in a node on to another node. The
task in the slow node will be killed and that task is transferred
to another node. The calculation of benefit of backup and not
backup of tasks will consider time required to backup the task
and remaining time to finish the task.
The speculation result of the task is shown in the task tracker.
The tasks that are on the slow nodes are killed and backed up on
another alternative node.

VII. Conclusion
In a Hadoop cluster of multiple slave nodes, some nodes may run
considerably very slow causing the performance of the cluster
throughput. In such cluster the slow running nodes are selected and
a task will be backed up when it meets the following conditions:
it has executed for a certain amount of time (i.e., the speculative
lag), both the progress rate and the process bandwidth in the
current phase of the task are sufficiently low the profit of doing
the backup outweighs that of not doing it, its estimated remaining
time is longer than the predicted time to finish on a backup node,
it has the longest remaining time among all the tasks satisfying
the conditions above.

VIII. Future Scope
The hadoop has great scope in distributed processing. The
speculation strategy can be managed to be automated in assigning
the tasks to better working nodes to improve the performance.

International Journal of Advanced Research
in Eduation Technology (IJARET)

28

Vol. 2, Issue 2 (Apr. - June 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

The slow working nodes can be given lower load to work so that
it can be processed considerably better than node that backup
the task.

IX. Acknowledgment
I am very thankful to my guide Mr Prashanth B. S. Assistant
Professor, Department of Computer Science and Engineering,
Mite for his cordial support, valuable information and guidance,
to prepare this paper and also thankful to Prof. Dr. Nagesh H R,
Head of the Department, Computer Science and Engineering, for
his valuable and constructive suggestions during the planning and
development of this work.

References
 J. Dean and S. Ghemawat, “Mapreduce: Simplified Data [1].
Processing on Large Clusters,”Comm. ACM, vol. 51, pp.
107-113, Jan. 2008.

 Apache Hadoop, http://Hadoop.apache.org/ 2013.[2].
 M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: [3].
istributed Data-Parallel Programs from Sequential Building
Blocks,” Proc. Second ACM SIGOPS/EuroSysEuropean
Conf. Computer Systems (EuroSys ’07), 2007.

 M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, and I. Stoica, [4].
“Improving Mapreduce Performance in Heterogeneous
Environments,” Proc. Eighth USENIX Conf. Operating
Systems Design and Implementation, (OSDI ’08), 2008.

 G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, [5].
Y. Lu, B. Saha, and E. Harris, “Reining in the Outliers in
Map-Reduce Clusters Using Mantri,” Proc. Ninth USENIX
Conf.Operating Systems Design and Implementation, (OSDI
’10), 2010.

 Y. Kwon, M. Balazinska, and B. Howe, “A Study of Skew in [6].
Mapreduce Applications,” Proc. Fifth Open Cirrus Summit,
2011.

 P.H. Ellaway, “Cumulative Sum Technique and Its Application [7].
to the Analysis of Peristimulus Time Histograms,”
Electroencephalography and Clinical Neurophysiology,
vol. 45, no. 2, pp. 302-304, 1978.

 A Study of Skew in MapReduce Applications YongChul Kwon, [8].
Magdalena Balazinska, Bill Howe University of Washington,
USA, Jerome Rolia, HP Labs

 Investigation of Data Locality in MapReduce Zhenhua Guo, [9].
Geoffrey Fox, Mo Zhou School of Informatics and Computing
Indiana University Bloomington Bloomington, IN USA

Authors Profile

Suprit S.H completed the bachelor’s degree
in Computer Science & Engineering from
visvesvaraya technological University
(VTU), currently pursuing Master degree
in Computer Networks & Engineering
at Mangalore Institute of Technology
and Engineering under VTU Belgaum,
Moodbidri.

Mr. Prashanth B.S completed bachelors
and master degree in Computer Science
and Engineering. Currently working as
Assistant Professor in Mangalore Institute of
Technology and Engineering, Moodbidri

