
International Journal of Advanced Research
in Education Technology (IJARET)

53

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

Datalytix for Intrusion Detection of Botnet using Packet
Inspection in Peer to Peer Network

IRai Prajwal Ganesh, IIManjunatha A. S.
1M.Tech Student, 2Senior Assistant Professor

I,IIDept.of CSE, Mangalore Institute of Technology and Engineering, Mangalore, Karnataka, India

I. Introduction
Peer-to-peer networks are networks in which all peers cooperate
with each other to perform a function in a decentralized fashion. All
peers are both client and server of services and can communicate
with each other directly without intermediary agents. When
compared with a centralized system, a Peer-to-Peer (P2P) system
provides an easy way to aggregate large amounts of resource
residing on the edge of Internet or in ad-hoc networks with a low
cost of system maintenance and ease of performing malicious
activity is a threat for security of Peer-to-Peer systems. Since
there is no central server in most Peer-to-Peer systems, peers
organize themselves to store and manage trust information about
each other fig.1.
The construction of Peer-to-Peer networks is on the top of
Network layer from OSI model, usually with a decentralized
protocol allowing ‘peers’ to share resources. Perhaps, the huge
success of Peer-to-Peer applications is mainly for to the ease of
resource sharing provided by them in the form of video, music,
files (Torrent), sharing of computing resources. Apart from these
applications, Peer-to-Peer paradigm has also been widely deployed
for LiveStation and Voice-over-IP (Skype) based services.
As Peer-to-Peer networks are inherently modeled without any
centralized server, they lack a single point-of-failure. This flexibility
given by Peer-to-Peer networks has attracted the attention of hackers
in the form of bot-masters. A ‘bot’ is a computer program which
allows the operative to remotely get control over the compromised
system where it is installed. A network of such infected end-hosts
under the remote command of a bot-master is called a ‘Botnet’.
With the capability of controlling massive number (in thousands)
of bots in the network of computers, bot-masters gets the power of
deploying attacks like click-fraud scam, mail spamming, Bitcoin
mining, Distributed Denial of Service (DDoS) attacks etc. on a
vast scale, and in turn generate millions of dollars per year in
revenue for the bot-master fig.2.
In cyberspace, there exist three style of Botnet
•	 Centralized
•	 Peer-to-Peer
•	 Hybrid
Traditional Botnets were known to use Internet Relay Chat
(IRC), which runs ‘Command & Control (C&C) operations in a

centralized architecture. Bot-masters have improved significantly
ways of attacks by utilizing the resilient feature offered by Peer-
to-Peer networks to build Botnets wherein bots communicate, pass
on commands and update other bots in a Peer-to-Peer fashion.
Just as a Peer-to-Peer network is resilient to break-down if a few
peers leave the network, Peer-to-Peer Botnets have proven to be
highly resilient even if a certain number of bots are identified
and taken-down.
A Peer-to-Peer bot’s life cycle consists of the following stages:
•	 Infection stage: stage where the bot spreads (this might

happen through a malicious software being installed by the
end-user, drive-by downloads, infected USB, etc.).

•	 Rally stage: during which the bot contacts series of hosts
programmed to request configuration file, binary updates
and neighbor peer lists, in order to join the Peer-to-Peer
network.

•	 Waiting stage: is stage where the bot will be passive and
waits for the bot-master’s command.

•	 Execution stage: in this stage bot actually carries out a
command, such as a Distributed Denial of Service (DDoS)
attack, generates spam emails, etc.

Fig.1: The process of Botnet spreading in network

Abstract
In Cybercrime, an increasing number of attacks are reported coming from Botnets. Botnet is one of the name which hover serious
security threats on the current Internet infrastructure. Peer-to-Peer Botnets is a group of negotiated computers which are remotely
controlled by its master under a decentralized Command and Control architecture. Botnets such as Spybot, Sinit and Zeus are popular,
however newly constructed bot differ significantly employing improved techniques makes challenging task in botnet detection. This
paper proposes and implements a framework for detecting Peer-to-Peer Botnet in live network and integrating with firewall to isolate
compromised machine. Open source tools like Hadoop, Hive and Mahout are used for big data analysis for intrusion detection.
Machine Learning library from Mahout is used for parallel processing of network traces to build Random Forest for Botnet detection
in live network and to prevent further association from Botnet using Firewall.

Keywords
Big Data, Intrusion Detection System, Peer-to-Peer, Hadoop, Hive, Mahout, Firewall, Botnet Detection, Network Security.

International Journal of Advanced Research
in Eduation Technology (IJARET)

54

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

Fig. 2: Peer-to-Peer Botnet way of attack

The biggest tests that security faces today on global scale are
Botnet attacks. Retailer’s credit card user’s account was stolen
with help of Spyware Botnet. Numerous WordPress user accounts
were lost because of enormous DDoS attack. Online security
communities were suspicious it to be a Peer-to-Peer based Botnet.
Botnet depends on compromised systems to send email spam
attack using different messages.
To evade detection by Intrusion Detection Systems (IDSs) and
Firewalls, communication patterns (with the bot-master or other
bots) are quite stealthy by Botnet. IDSs and Firewalls which are
our shield for protecting system from malicious attack rely on
anomalous communication patterns to detect malicious behavior
of a host, however IDS and Firewall are not very effective in
detecting such Botnets which are very furtive and lie low, because
they generate little traffic. Only way to detect and mitigate Bonet
attacks is to trace network for packets. In this present generation
packet flow as increased exponentially, attack from Bonet as
increased too. However, computer systems lack the hardware
and memory. This has led to an increase of interest in distributed
algorithms, taking advantage of the multi-core architectures and
distributed computing.
Network traces and capture packet are the valuable resources for
detecting and blocking such attacks. Detecting bots individually
is challenging, detecting them as cumulative holds the key. As
attacks are increasing every day, size of network traces and capture
packets are increasing exponentially. Standalone system lacks
the hardware configuration for handing big data. However if
single system is used for detecting Botnet by taking big dataset
as input, dataset will itself acquire the whole heap size from the
main memory, there will be no space for running JVM and running
single process for the same will be slow to get final result. This
led to advancement in distributed programming models, with the
advantage of multi-core architecture, distributed processing and
storage such as MapReduce, HDFS respectively.
Thus this paper proposes intrusion detection system for scalable
and disturbed processing for big data and integrating with Firewall
for blocking the Botnet from system. This framework uses Hadoop,
which is open source software providing parallel and distributed
computing using the power from the nodes involved in cluster.
This framework utilizes Apache Hive for processing the packets.
Apache Mahout has machine learning algorithm libraries to build

classification prediction method.
The paper is organized as follows: Section 2 describes related
work in field of machine learning algorithms for detecting Peer-to-
Peer Botnet and Hadoop tool effectiveness for intrusion detection
system. Section 3 concentrates on framework and briefly describes
methodology to achieve real time Botnet detection. Section 4
describes application implementation for detection using the
framework. Section 5 result and conclusion with future work.

II. Related Work
In recent years, machine learning approach is proposed for
mitigating network security threats. Researchers find semantic-
based method more efficient to detecting attacks compared to
signature-based method [8]. In [5] researcher have proposed
Hadoop based method to detect HTTP flood using Mapreduce
on distributed computing for huge amount of traffic in reasonable
time.
In field of security threat detection using machine learning approach
there has been significant research. Author [6] proposes to design
anomaly intrusion detection using machine learning and pattern
recognition method.
In the paper [9] based on certain features which are related to
traffic, the author has differentiate the network flow records.
They also categorized them as Peer-to-Peer malicious and benign
and also presented how plotter keeps changing their behavior to
evade detection. This technique was also observed in Nugache
behavior. Authors in [10] describe the challenges and features
while handling Nugache Peer-to-Peer Botnet. Researchers [11]
conclude detecting Nugache traffic using static intrusion detection
is impossible.
Authors in [12] explain trust model can mitigate attacks and
detect malicious peers. Reseachers [13] proposed technique to
detect Zeus Botnet through network analysis. Authors studied
Storm in [11] concludes that configuration file used by bot can be
used to detect bot by IDS. However it is difficult to differentiate
between authentic Peer-to-Peer communication and Storm bot’s
communication since the behavior of Storm can be disguised to
look like authentic Peer-to-Peer communication. Authors [14]
to address this issue, develop way to mitigate the Storm worm
and introduce an active measurement technique to enumerate the
number of infected hosts by reverse engineering of bot’s binary
executable, in order to identify the function which generates the
key that is used for searching other infected machine and bots.
Researchers [15] retrieve the hashes of malware and use it for
locating a zombie node’s activities in Peer-to-Peer network. They
proposed that if peer searches for hash malware, it must be zombie.
Authors [16] formulate technique to localize Botnet members
based on structured layout topologies used to communicate
command and control.
Researchers [17] present a framework named BotMiner, which
detect both centralized IRC and P2P Botnets using an anomaly-
based detection system. The assumption in this regard is that bots
are coordinated malware that exhibits similar communication
patterns and behaviors. BotMiner targets a group of compromised
systems belonging to monitored network, whereas it fails to detect
a simple system which might be part of Botnet which is not the
monitored network’s zone.
In previous works, researchers have focused on detecting a specific
Botnet activity and their methods were not successful in detecting
bots, here traffic characteristics were not used in the training set.
It can be seen that using machine learning based approach is

International Journal of Advanced Research
in Education Technology (IJARET)

55

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

better in detecting malicious traffic when compared to traditional
signature based approach as the bot masters redesign the bots from
time to time. The functionality and behavior of the Botnet varies
importantly with release of each version of the bot. Signature
based detectors rely heavily upon the existing Botnet signatures
to detect any activity. Mainly when handling zero-day attacks,
signature based approach fails completely as there is no account
of previous activity for that bot. Therefore, a machine learning
approach is preferred to detect evidently suspicious activity based
on the anomalous behavior of the network. Also in previous work,
there has not been much research on deploying the detection
module in a real-time scenario to monitor and mitigate Botnet
activity in a network. In this paper, the handling of large-scale
network traffic in a very short time is addressed and a solution is
proposed to deal with Botnet detection at quasi-real time in heavy
bandwidths of data traffic.

III. Methodology

A. Traffic Capture
For experiment, Network trace files (pcaps) are acquired from the
sample of Peer-to-Peer bots obtained from [18, 19] which were
deployed in a control environment test bed (as described section 4).
Tshark[7] is a network protocol analyzer which uses pcap library
to read and capture packets from live network. Dumpcap[4] is
network traffic tool that uses Libpcap libraries. Dumpcap is used
to sniff the packets from the network interfaces and while Tshark
is used to extract and delimit the required fields out of the packets
which are required for generating feature set for Machine Learning
Module input. Dumpcap is used for capturing the packet from live
network as it uses kernel level libpcap libraries. Dumpcap has
better performance compare to Tshark, in case of buffer size to
handle captured traffic and saving onto consecutive pcaps file.
Traffic Capture Module uses ring buffer option of Dumpcap to
save the traffic packets monitored from the live network onto
consecutive pcaps files of specified size. Tshark in parallel will
extract the fields required and make a delimited file with specified
separator for the feature set generation from the captured pcap
files. These two processes are automated using Perl scripts for
sniffing packets and extracting fields from them. The delimited
files from created by Tshark instances are loaded into HDFS upon
completion for feature extraction.

B. Feature Extraction
Once HDFS as the delimited file, next step is to extract feature sets
by using Apache Hive [2].Hive an open-source data warehouse
system on top of Hadoop[1] for querying and analyzing large
datasets similar to relational database management system
(RDBMS). Hadoop is a framework using Mapredue for handling
large datasets in a distributed computing environment.
Apache Hive is used in this framework to add the flexibility of
changing the feature extraction at run time with respect to Tshark
extracted fields. As mentioned above, Perl script is used to sniff
and extract fields and create Hive table accordingly to the fields
decided by user to extract from packet. Importance of using have
here is to avoid low level Mapreduce programming which requires
developers to write customs programs which are hard to reuse by
changing code dynamically.
Apache Hive facilitates easy extract/transform/load (ETL). Hive
uses a specific query language called as HiveQL (Hive Query
Language) is similar to SQL declarative language and therefore

can be easily learnt by people acquainted with SQL [2]. HiveQL
are compiled into Mapreduce jobs in runtime. The map phase
transforms the input into key-value pair based on the query and
passed to reducer phase. Then the reducer aggregates value by
groups of key and stores the output.
Basically, the user connects to the user interface and executes a
HiveQL command, which is sent to the driver. The driver then
creates a session and sends the query to the compiler which extracts
metadata from the MetaStore and generates an execution plan.
This logical plan is then optimized by the query optimization
component of Hive and translated into an executable query plan
consisting of multiple map and reduce phases. The plan is then
executed by the MapReduce execution engine consisting of one
jobtracker and possibly several task trackers per map and reduce
phase.
Table below lists the features extracted from the table using “group
by” clause in HiveQL. This list is the network flow statistics of
packets transferred and it’s organized as group of source ip, source
port, destination ip, destination port and protocol.

Table 1: Feature statistics extracted from the software
Feature Description of the feature
Srcip Source ip address (string)
Srcport Source port number
Dstip Destination ip address (string)
Dstport Destination port number
Proto Protocol (tcp=6 or udp=17)
total_fpacket Total packets in forward direction
total_bpackets Total packets in backward direction
total_bvolume Total bytes in backward direction
min_fpktl Size of smallest packet sent in forward

direction (in bytes)
mean_fpktl Mean size of packets sent in forward direction

(in bytes)
max_fpktl Size of largest packet sent in forward direction

(in bytes)
std_fpktl Standard deviation from mean of packets sent

in forward direction (in bytes)
min_bpktl Size of smallest packet sent in backward

direction (in bytes)
mean_bpktl Mean size of packets sent in backward

direction (in bytes)
max_bpktl Size of largest packet sent in backward

direction (in bytes)
std_bpktl Standard deviation from mean of packets sent

in backward direction (in bytes)
min_fiat Minimum amount of time between two

packets sent in forward direction (in
microseconds)

mean_fiat Mean amount of time between two packets
sent in forward direction (in microseconds)

max_fiat Maximum amount of time between two
packets sent in forward direction (in
microseconds)

std_fpktl Standard deviation from mean amount of
time between two packets sent in forward
direction (in microseconds)

min_biat Minimum amount of time between two
packets sent in backward direction (in
microseconds)

mean_biat Mean amount of time between two packets sent
in backward direction (in microseconds)

International Journal of Advanced Research
in Eduation Technology (IJARET)

56

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)

 ISSN : 2394-6814 (Print)

www.ijaret.com© IJARET All Rights Reserved

max_biat Maximum amount of time between two
packets sent in backward direction (in
microseconds)

std_biat Standard deviation from mean amount of
time between two packets sent in backward
direction (in microseconds)

Duration Duration of flow (in microseconds)
fpsh_cnt Number of times PSH flag was set in packets

travelling in forward direction (0 for UDP)
bpsh_cnt Number of times PSH flag was set in packets

travelling in backward direction (0 for
UDP)

furg_cnt Number of times URG flag was set in packets
travelling in forward direction (0 for UDP)

burg_cnt Number of times URG flag was set in
packets travelling in backward direction (0
for UDP)

total_bhlen Total bytes used for headers in backward
direction

total_fhlen Total bytes used for headers in forward
direction

C. Machine Learning
Apache Mahout [3] is package of implementations of the most
popular machine learning algorithms, with the implementations
designed specifically to use Hadoop to enable scalability in
processing of huge data sets. As Mahout Machine Learning library
algorithms are run as Mapreduce jobs, it uses power of distributed
computing from the cluster to obtain efficient result.
Classification is a simplified form of decision making that
gives discrete answers to an individual question. Machine-
based classification is an automation of this decision making
process that learns from examples of correct decision making
and emulates those decisions automatically, it’s a core concept in
predictive analytics and is an instance of supervised learning i.e.
learning where a training set of correctly identified observations
is available.
The Random Forest algorithm’s is used from Mahout’s library for
training model and classification purpose. Random forests trains
many number of classification trees. It is an ensemble learning
method for classification that constructs a number of decision
trees at training time and give result as class that is the mode of
the classes predicted by individual trees. Random Forest unlike
single decision trees does not suffer from high variance, because
it finds average collection of decision trees.
Random Forest algorithm has lot of benefits in classification like
combining result from learning model increases the accuracy of the
classification, runs effective on large datasets and is time efficient
as well as can handle a large amount of explanatory variables,
that is why Random Forest becomes perfect choice for Botnet
detection.
First a file descriptor is generated for the dataset got from the
previous module (feature extraction) before building Random
Forest model into three attribute (numeric, catergorical and label).-
Dmapred.max.split.size argument is used to control maximum
size of each partition (1/10 of size of dataset) by Hadoop.[20]
Thus 10 partitions will be used. Then 100 trees are built, each
tree using 5 random selected attributes per node and predicted
outputs of tree is stored onto HDFS from which malicious node
can be identified.

D. Firewall Rule
Once the malicious node is identified by previous module, its
ip address is obtained from the result which is stored in HDFS.
IPtable firewall is used to manage packets filtering for compromised
system ip address. IPtable tool is used to manage the Linux firewall
rules. On high-level iptables might contain multiple tables and
those tables might contain multiple chains. In turn chains might
contain multiple rules. Chains can be built-in or user defined.
Rules are defined for the packets. [21]
Firewall IPtable shell script is used to add the rules. These rules are
set for the incoming and outgoing packet from particular system.
Rules will contain target value as accept or drop for the mentioned
protocol, source and destination.

IV. Experimental Setup
In order to contain and collect malicious source for this research
work, test bed consists of standalone network of Linux systems.
The systems were connected to an Access switch in order to form
the isolated network. On top of each of these physical machines,
windows operating system is run as guest OS on virtual machine.
This virtual machine has Peer-to-Peer Botnet samples deployed on.
The samples Botnet are Waledac, Zeus, Kelihos, Conficker [].
The network was monitored for malware sample activity and
captured by Dumpcap for 48 hours each. After collecting packet
traces of network activity right from the infection stage to the
attack stage of each malware, the pcap files were stored in HDFS
for further analysis. Dumpcap uses ring buffer to create successive
pcap files, an optimal size of 50 MB until the condition is satisfied,
in this case is the time mention.
To train classification module in efficient way, captured file from
known Bot attacks are used as dataset. These datasets also contain
benign traffic which is needed for classifier such as ftp transfer,
video streaming, p2p application and telnet session. These entire
datasets are fused and used from machine learning algorithm for
model generating, from which 90% is taken as training set and 10%
is taken as testing set. For training the framework dataset from (
) is replayed onto the network using TCP Replay. The sequence
of steps used in this real-time Peer-to-Peer Botnet detection and
isolated from network is shown in fig 3.

Fig. 3: Overview of Real-time Deployment of the Detection
Module

V. Conclusion and Future Work
It is introductory state of the scheme presented in this paper, a lot
of ground-work still needs to be done. This paper puts forward
methods and flow to find abnormalities in network traffic data
using data big analytics and distributed computing for faster result.
The ensemble trees classification and prediction the rule set in
Firewall is updated. In this paper we presented the methods to

International Journal of Advanced Research
in Education Technology (IJARET)

57

Vol. 2, Issue 1 (Jan. - Mar. 2015)
ISSN : 2394-2975 (Online)
ISSN : 2394-6814 (Print)

www.ijaret.com © IJARET All Rights Reserved

detect Botnet DDos and communication that is recognized by
machine learning module using Random Forest algorithm. This
method can help cover the gap in traditional network systems,
to achieve a better performance and detection of Peer-to-Peer
Botnet. It is expected that future work on this IDS can be done by
analysing more advanced algorithm and get more efficient results
in network traffic using patterns from Hadoop.

VI. Acknowledgment
I am very thankful to my guide Mr Manjunath A. S. Senior Assistant
Professor, Department of Computer Science and Engineering,
Mite for his cordial support, valuable information and guidance,
to prepare this paper and also thankful to Prof. Dr. Nagesh H R,
Head of the Department, Computer Science and Engineering, for
his valuable and constructive suggestions during the planning and
development of this work.

References
[1] Apache, Hadoop, http://hadoop.apache.org/
[2] Apache, Hive, https://hive.apache.org/
[3] Apache, Mahout, http://mahout.apache.org/
[4] Dumpcap, http://www.wireshark.org/docs/ man-pages/

dumpcap.html
[5] Yeonhee Lee, Youngseok Lee,” Detecting DDoS attacks with

Hadoop”, Article No. 7 ACM New York, NY, USA, 2011 table
of contents ISBN: 978-1-4503-1042-0.

[6] Phyu Thi Htun, Kyaw Thet Khaing, “Anomaly Intrusion
Detection System using Random Forests and k-Nearest
Neighbor” Journal IJPTT, Volume-3,issue-1, IJPTT-
V3I1P413

[7] Tshark, https://www.wireshark.org/docs/ man-pages / tshark.
html

[8] A.Razzaq, K. Latif, H.F Ahmad, A. Hur, Z. Anwar, P.C.
Bloodworths, “Semantic security against web application
attracks. Information Science 254, 2014

[9] T.F. Yen, M.K Reiter, “ Are your hosts trading or plotting?
Telling P2P file-sharing and bots apart” IEEE, 2010

[10] D. Dittrich, S. Dietrich, “P2P as Botnet command and
control: a deeper insight”, 3rd International Conference
on Malicious and Unwanted Software, MALWARE 2008,
IEEE, October 2008

[11] S. Stover, D. Dittrich, J. Hernandez, S. Dietrich, “Analysis
of the Storm and Nugache trojans: P2P is here “, Usenix;
Login 32, 2007

[12] D. Arndt, Netmate, http://dan.arndt.ca/nims/calculating-
flow-statistics-using-netmate

[13] Benvenuti, Understanding Linux Network Internals, 2009.
[14] Holz, T.M Steiner, F. Dahl, E. Biersack, F. Freiling,

“Measurements and mitigation of peer-to-peer-based botnets:
a case study on storm worm”, Usenix workshop,2008

[15] J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, D.
Dagon, “Peer-to-peer botnets: overview and case study”,
Proceedings of the First Conference on First Workshop on
Hot Topics in Understanding Botnets, 2007

[16] S. Nagaraja, P. Mittal, C.Y. Hong, M. Caesar, N. Borisov,
“BotGrep: finding P2P bots with structured graph analysis”,
USENIX Security Symposium, 2010

[17] G. Gu, R. Perdisci, J. Zhang, W. Lee, “BotMiner:
clustering analysis of network traffic for protocol-and
structure-independent botnet detection”, USENIX, Security
Symposium, 2008

[18] ContagioDump Blogspot, http://contagiodump.blogspot.i
n

[19] Open Malware, http://openmalware.org/
[20] Mahout Partial Implementation https://mahout.apache.org

/users/classification/partial-implementation.html
[21] Firewall Rules, http://www.thegeekstuff.com/2011/02/

iptables-add-rule/
[22] Kamaldeep Singh, Sharath Chandra Guntuku, Abhishek

Thakur, Chittaranjan Hota, “Big Data Analysis framework
for peer-to-peer detection using random forest”, information
science, 2014

Authors Profile

Rai Prajwal Ganesh completed the
Bachelor’s Degree in Computer Science
& Engineering from Visvesvaraya
technological University (VTU). Currently
pursuing M.Tech degree in Computer
Science & Engineering at Mangalore
Institute of Technology, Mangalore.

Mr. Manjunath A. S. received Master Degree
in computer science and Engineering. He
is currently working as Senior Assistant
professor in the Department of Computer
Science and Engineering, Mangalore
Institute of Technology and Engineering,
Mangalore.

