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I. Introduction
Peer-to-peer networks are networks in which all peers cooperate 
with each other to perform a function in a decentralized fashion. All 
peers are both client and server of services and can communicate 
with each other directly without intermediary agents. When 
compared with a centralized system, a Peer-to-Peer (P2P) system 
provides an easy way to aggregate large amounts of resource 
residing on the edge of Internet or in ad-hoc networks with a low 
cost of system maintenance and ease of performing malicious 
activity is a threat for security of Peer-to-Peer systems. Since 
there is no central server in most Peer-to-Peer systems, peers 
organize themselves to store and manage trust information about 
each other fig.1.
The construction of Peer-to-Peer networks is on the top of 
Network layer from OSI model, usually with a decentralized 
protocol allowing ‘peers’ to share resources. Perhaps, the huge 
success of Peer-to-Peer applications is mainly for to the ease of 
resource sharing provided by them in the form of video, music, 
files (Torrent), sharing of computing resources. Apart from these 
applications, Peer-to-Peer paradigm has also been widely deployed 
for LiveStation and Voice-over-IP (Skype) based services.
As Peer-to-Peer networks are inherently modeled without any 
centralized server, they lack a single point-of-failure. This flexibility 
given by Peer-to-Peer networks has attracted the attention of hackers 
in the form of bot-masters. A ‘bot’ is a computer program which 
allows the operative to remotely get control over the compromised 
system where it is installed. A network of such infected end-hosts 
under the remote command of a bot-master is called a ‘Botnet’. 
With the capability of controlling massive number (in thousands) 
of bots in the network of computers, bot-masters gets the power of 
deploying attacks like click-fraud scam, mail spamming, Bitcoin 
mining, Distributed Denial of Service (DDoS) attacks etc. on a 
vast scale, and in turn generate millions of dollars per year in 
revenue for the bot-master fig.2.
In cyberspace, there exist three style of Botnet
•	 Centralized 
•	 Peer-to-Peer
•	 Hybrid
Traditional Botnets were known to use Internet Relay Chat 
(IRC), which runs ‘Command & Control (C&C) operations in a 

centralized architecture. Bot-masters have improved significantly 
ways of attacks by utilizing the resilient feature offered by Peer-
to-Peer networks to build Botnets wherein bots communicate, pass 
on commands and update other bots in a Peer-to-Peer fashion. 
Just as a Peer-to-Peer network is resilient to break-down if a few 
peers leave the network, Peer-to-Peer Botnets have proven to be 
highly resilient even if a certain number of bots are identified 
and taken-down.
A Peer-to-Peer bot’s life cycle consists of the following stages:
•	 Infection stage: stage where the bot spreads (this might 

happen through a malicious software being installed by the 
end-user, drive-by downloads, infected USB, etc.).

•	 Rally stage: during which the bot contacts series of hosts 
programmed to request configuration file, binary updates 
and neighbor peer lists, in order to join the Peer-to-Peer 
network. 

•	 Waiting stage: is stage where the bot will be passive and 
waits for the bot-master’s command.

•	 Execution stage: in this stage bot actually carries out a 
command, such as a Distributed Denial of Service (DDoS) 
attack, generates spam emails, etc.

Fig.1: The process of Botnet spreading in network
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Fig. 2:  Peer-to-Peer Botnet way of attack

The biggest tests that security faces today on global scale are 
Botnet attacks. Retailer’s credit card user’s account was stolen 
with help of Spyware Botnet. Numerous WordPress user accounts 
were lost because of enormous DDoS attack. Online security 
communities were suspicious it to be a Peer-to-Peer based Botnet. 
Botnet depends on compromised systems to send email spam 
attack using different messages.
To evade detection by Intrusion Detection Systems (IDSs) and 
Firewalls, communication patterns (with the bot-master or other 
bots) are quite stealthy by Botnet. IDSs and Firewalls which are 
our shield for protecting system from malicious attack rely on 
anomalous communication patterns to detect malicious behavior 
of a host, however IDS and Firewall are not very effective in 
detecting such Botnets which are very furtive and lie low, because 
they generate little traffic. Only way to detect and mitigate Bonet 
attacks is to trace network for packets. In this present generation 
packet flow as increased exponentially, attack from Bonet as 
increased too. However, computer systems lack the hardware 
and memory. This has led to an increase of interest in distributed 
algorithms, taking advantage of the multi-core architectures and 
distributed computing.
Network traces and capture packet are the valuable resources for 
detecting and blocking such attacks. Detecting bots individually 
is challenging, detecting them as cumulative holds the key. As 
attacks are increasing every day, size of network traces and capture 
packets are increasing exponentially. Standalone system lacks 
the hardware configuration for handing big data. However if 
single system is used for detecting Botnet by taking big dataset 
as input, dataset will itself acquire the whole heap size from the 
main memory, there will be no space for running JVM and running 
single process for the same will be slow to get final result. This 
led to advancement in distributed programming models, with the 
advantage of multi-core architecture, distributed processing and 
storage such as MapReduce, HDFS respectively.
Thus this paper proposes intrusion detection system for scalable 
and disturbed processing for big data and integrating with Firewall 
for blocking the Botnet from system. This framework uses Hadoop, 
which is open source software providing parallel and distributed 
computing using the power from the nodes involved in cluster. 
This framework utilizes Apache Hive for processing the packets. 
Apache Mahout has machine learning algorithm libraries to build 

classification prediction method.
The paper is organized as follows: Section 2 describes related 
work in field of machine learning algorithms for detecting Peer-to-
Peer Botnet and Hadoop tool effectiveness for intrusion detection 
system. Section 3 concentrates on framework and briefly describes 
methodology to achieve real time Botnet detection. Section 4 
describes application implementation for detection using the 
framework. Section 5 result and conclusion with future work.

II. Related Work
In recent years, machine learning approach is proposed for 
mitigating network security threats. Researchers find semantic-
based method more efficient to detecting attacks compared to 
signature-based method [8]. In [5] researcher have proposed 
Hadoop based method to detect HTTP flood using Mapreduce 
on distributed computing for huge amount of traffic in reasonable 
time. 
In field of security threat detection using machine learning approach 
there has been significant research. Author [6] proposes to design 
anomaly intrusion detection using machine learning and pattern 
recognition method.   
In the paper [9] based on certain features which are related to 
traffic, the author has differentiate the network flow records. 
They also categorized them as Peer-to-Peer malicious and benign 
and also presented how plotter keeps changing their behavior to 
evade detection. This technique was also observed in Nugache 
behavior. Authors in [10] describe the challenges and features 
while handling Nugache Peer-to-Peer Botnet. Researchers [11] 
conclude detecting Nugache traffic using static intrusion detection 
is impossible.
Authors in [12] explain trust model can mitigate attacks and 
detect malicious peers.  Reseachers [13] proposed technique to 
detect Zeus Botnet through network analysis. Authors studied 
Storm in [11] concludes that configuration file used by bot can be 
used to detect bot by IDS. However it is difficult to differentiate 
between authentic Peer-to-Peer communication and Storm bot’s 
communication since the behavior of Storm can be disguised to 
look like authentic Peer-to-Peer communication.  Authors [14] 
to address this issue, develop way to mitigate the Storm worm 
and introduce an active measurement technique to enumerate the 
number of infected hosts by reverse engineering of bot’s binary 
executable, in order to identify the function which generates the 
key that is used for searching other infected machine and bots.
Researchers [15] retrieve the hashes of malware and use it for 
locating a zombie node’s activities in Peer-to-Peer network. They 
proposed that if peer searches for hash malware, it must be zombie. 
Authors [16] formulate technique to localize Botnet members 
based on structured layout topologies used to communicate 
command and control. 
Researchers [17] present a framework named BotMiner, which 
detect both centralized IRC and P2P Botnets using an anomaly-
based detection system. The assumption in this regard is that bots 
are coordinated malware that exhibits similar communication 
patterns and behaviors. BotMiner targets a group of compromised 
systems belonging to monitored network, whereas it fails to detect 
a simple system which might be part of Botnet which is not the 
monitored network’s zone. 
In previous works, researchers have focused on detecting a specific 
Botnet activity and their methods were not successful in detecting 
bots, here traffic characteristics were not used in the training set. 
It can be seen that using machine learning based approach is 
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better in detecting malicious traffic when compared to traditional 
signature based approach as the bot masters redesign the bots from 
time to time. The functionality and behavior of the Botnet varies 
importantly with release of each version of the bot. Signature 
based detectors rely heavily upon the existing Botnet signatures 
to detect any activity. Mainly when handling zero-day attacks, 
signature based approach fails completely as there is no account 
of previous activity for that bot. Therefore, a machine learning 
approach is preferred to detect evidently suspicious activity based 
on the anomalous behavior of the network. Also in previous work, 
there has not been much research on deploying the detection 
module in a real-time scenario to monitor and mitigate Botnet 
activity in a network. In this paper, the handling of large-scale 
network traffic in a very short time is addressed and a solution is 
proposed to deal with Botnet detection at quasi-real time in heavy 
bandwidths of data traffic.

III. Methodology

A. Traffic Capture
For experiment, Network trace files (pcaps) are acquired from the 
sample of Peer-to-Peer bots obtained from [18, 19] which were 
deployed in a control environment test bed (as described section 4). 
Tshark[7] is a network protocol analyzer which uses pcap library 
to read and capture packets from live network. Dumpcap[4] is 
network traffic tool that uses Libpcap libraries. Dumpcap is used 
to sniff the packets from the network interfaces and while Tshark 
is used to extract and delimit the required fields out of the packets 
which are required for generating feature set for Machine Learning 
Module input. Dumpcap is used for capturing the packet from live 
network as it uses kernel level libpcap libraries. Dumpcap has 
better performance compare to Tshark, in case of buffer size to 
handle captured traffic and saving onto consecutive pcaps file.
Traffic Capture Module uses ring buffer option of Dumpcap to 
save the traffic packets monitored from the live network onto 
consecutive pcaps files of specified size. Tshark in parallel will 
extract the fields required and make a delimited file with specified 
separator for the feature set generation from the captured pcap 
files. These two processes are automated using Perl scripts for 
sniffing packets and extracting fields from them. The delimited 
files from created by Tshark instances are loaded into HDFS upon 
completion for feature extraction.

B. Feature Extraction
Once HDFS as the delimited file, next step is to extract feature sets 
by using Apache Hive [2].Hive an open-source data warehouse 
system on top of Hadoop[1] for querying and analyzing large 
datasets similar to relational database management system 
(RDBMS). Hadoop is a framework using Mapredue for handling 
large datasets in a distributed computing environment.
Apache Hive is used in this framework to add the flexibility of 
changing the feature extraction at run time with respect to Tshark 
extracted fields. As mentioned above, Perl script is used to sniff 
and extract fields and create Hive table accordingly to the fields 
decided by user to extract from packet. Importance of using have 
here is to avoid low level Mapreduce programming which requires 
developers to write customs programs which are hard to reuse by 
changing code dynamically.
Apache Hive facilitates easy extract/transform/load (ETL). Hive 
uses a specific query language called as HiveQL (Hive Query 
Language) is similar to SQL declarative language and therefore 

can be easily learnt by people acquainted with SQL [2]. HiveQL 
are compiled into Mapreduce jobs in runtime. The map phase 
transforms the input into key-value pair based on the query and 
passed to reducer phase. Then the reducer aggregates value by 
groups of key and stores the output.
Basically, the user connects to the user interface and executes a 
HiveQL command, which is sent to the driver. The driver then 
creates a session and sends the query to the compiler which extracts 
metadata from the MetaStore and generates an execution plan. 
This logical plan is then optimized by the query optimization 
component of Hive and translated into an executable query plan 
consisting of multiple map and reduce phases. The plan is then 
executed by the MapReduce execution engine consisting of one 
jobtracker and possibly several task trackers per map and reduce 
phase.
Table below lists the features extracted from the table using “group 
by” clause in HiveQL. This list is the network flow statistics of 
packets transferred and it’s organized as group of source ip, source 
port, destination ip, destination port and protocol.

Table 1: Feature statistics extracted from the software
Feature Description of the feature
Srcip Source ip address (string)
Srcport Source port number
Dstip Destination ip address (string)
Dstport Destination port number
Proto Protocol (tcp=6 or udp=17)
total_fpacket Total packets in forward direction
total_bpackets Total packets in backward direction
total_bvolume Total bytes in backward direction
min_fpktl Size of smallest packet sent in forward 

direction (in bytes)
mean_fpktl Mean size of packets sent in forward direction 

(in bytes)
max_fpktl Size of largest packet sent in forward direction 

(in bytes)
std_fpktl Standard deviation from mean of packets sent 

in forward direction (in bytes)
min_bpktl Size of smallest packet sent in backward 

direction (in bytes)
mean_bpktl Mean size of packets sent in backward 

direction (in bytes)
max_bpktl Size of largest packet sent in backward 

direction (in bytes)
std_bpktl Standard deviation from mean of packets sent 

in backward direction (in bytes)
min_fiat Minimum amount of time between two 

packets sent in forward direction (in 
microseconds)

mean_fiat Mean amount of time between two packets 
sent in forward direction (in microseconds)

max_fiat Maximum amount of time between two 
packets sent in forward direction (in 
microseconds)

std_fpktl Standard deviation from mean amount of 
time between two packets sent in forward 
direction (in microseconds)

min_biat Minimum amount of time between two 
packets sent in backward direction (in 
microseconds)

mean_biat Mean amount of time between two packets sent 
in backward direction (in microseconds)
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max_biat Maximum amount of time between two 
packets sent in backward direction (in 
microseconds)

std_biat Standard deviation from mean amount of 
time between two packets sent in backward 
direction (in microseconds)

Duration Duration of flow (in microseconds)
fpsh_cnt Number of times PSH flag was set in packets 

travelling in forward direction (0 for UDP)
bpsh_cnt Number of times PSH flag was set in packets 

travelling in backward direction (0 for 
UDP)

furg_cnt Number of times URG flag was set in packets 
travelling in forward direction (0 for UDP)

burg_cnt Number of times URG flag was set in 
packets travelling in backward direction (0 
for UDP)

total_bhlen Total bytes used for headers in backward 
direction

total_fhlen Total bytes used for headers in forward 
direction

C. Machine Learning
Apache Mahout [3] is package of implementations of the most 
popular machine learning algorithms, with the implementations 
designed specifically to use Hadoop to enable scalability in 
processing of huge data sets. As Mahout Machine Learning library 
algorithms are run as Mapreduce jobs, it uses power of distributed 
computing from the cluster to obtain efficient result.
Classification is a simplified form of decision making that 
gives discrete answers to an individual question. Machine-
based classification is an automation of this decision making 
process that learns from examples of correct decision making 
and emulates those decisions automatically, it’s a core concept in 
predictive analytics and is an instance of supervised learning i.e. 
learning where a training set of correctly identified observations 
is available.
The Random Forest algorithm’s is used from Mahout’s library for 
training model and classification purpose. Random forests trains 
many number of classification trees. It is an ensemble learning 
method for classification that constructs a number of decision 
trees at training time and give result as class that is the mode of 
the classes predicted by individual trees. Random Forest unlike 
single decision trees does not suffer from high variance, because 
it finds average collection of decision trees. 
Random Forest algorithm has lot of benefits in classification like 
combining result from learning model increases the accuracy of the 
classification, runs effective on large datasets and is time efficient 
as well as can handle a large amount of explanatory variables, 
that is why Random Forest becomes perfect choice for Botnet 
detection. 
First a file descriptor is generated for the dataset got from the 
previous module (feature extraction) before building Random 
Forest model into three attribute (numeric, catergorical and label).-
Dmapred.max.split.size argument is used to control maximum 
size of each partition (1/10 of size of dataset) by Hadoop.[20] 
Thus 10 partitions will be used. Then 100 trees are built, each 
tree using 5 random selected attributes per node and predicted 
outputs of tree is stored onto  HDFS from which malicious node 
can be identified.

D. Firewall Rule
Once the malicious node is identified by previous module, its 
ip address is obtained from the result which is stored in HDFS. 
IPtable firewall is used to manage packets filtering for compromised 
system ip address. IPtable tool is used to manage the Linux firewall 
rules. On high-level iptables might contain multiple tables and 
those tables might contain multiple chains. In turn chains might 
contain multiple rules. Chains can be built-in or user defined. 
Rules are defined for the packets. [21]
Firewall IPtable shell script is used to add the rules. These rules are 
set for the incoming and outgoing packet from particular system. 
Rules will contain target value as accept or drop for the mentioned 
protocol, source and destination.

IV. Experimental Setup
In order to contain and collect malicious source for this research 
work, test bed consists of standalone network of Linux systems. 
The systems were connected to an Access switch in order to form 
the isolated network. On top of each of these physical machines, 
windows operating system is run as guest OS on virtual machine. 
This virtual machine has Peer-to-Peer Botnet samples deployed on. 
The samples Botnet are Waledac, Zeus, Kelihos, Conficker []. 
The network was monitored for malware sample activity and 
captured by Dumpcap for 48 hours each. After collecting packet 
traces of network activity right from the infection stage to the 
attack stage of each malware, the pcap files were stored in HDFS 
for further analysis. Dumpcap uses ring buffer to create successive 
pcap files, an optimal size of 50 MB until the condition is satisfied, 
in this case is the time mention. 
To train classification module in efficient way, captured file from 
known Bot attacks are used as dataset. These datasets also contain 
benign traffic which is needed for classifier such as ftp transfer, 
video streaming, p2p application and telnet session. These entire 
datasets are fused and used from machine learning algorithm for 
model generating, from which 90% is taken as training set and 10% 
is taken as testing set. For training the framework dataset from ( 
) is replayed onto the network using TCP Replay. The sequence 
of steps used in this real-time Peer-to-Peer Botnet detection and 
isolated from network is shown in fig 3.

Fig. 3: Overview of Real-time Deployment of the Detection 
Module

V. Conclusion and Future Work
It is introductory state of the scheme presented in this paper, a lot 
of ground-work still needs to be done. This paper puts forward 
methods and flow to find abnormalities in network traffic data 
using data big analytics and distributed computing for faster result. 
The ensemble trees classification and prediction the rule set in 
Firewall is updated. In this paper we presented the methods to 
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detect Botnet DDos and communication that is recognized by 
machine learning module using Random Forest algorithm. This 
method can help cover the gap in traditional network systems, 
to achieve a better performance and detection of Peer-to-Peer 
Botnet.  It is expected that future work on this IDS can be done by 
analysing more advanced algorithm and get more efficient results 
in network traffic using patterns from Hadoop.
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